ACHINE LEARNING FOR BUSY PEOPLE 10/12/2019 @

Fabien VAUCHELLES

zelros.com / fabien.vauchelles.@zelros.com / @fabienv
http://bit.ly/ml-aismarttech

INTRODUCTION

I WILL TELL YOU THE TRUTH

JACK KNEW HE WOULD DIE

JACK KNEW HIS FUTURE

LIFE DECISION PATH

LIFE DECISION PATH

BACK TO MACHINE LEARNING

If you know the passengers list:

- Gender
- Age
- Ticket class
- Does he survived ?

You can create a <u>Decision Tree</u> for this <u>Supervised</u> Problem !

REAL LIFE IS DIFFERENT...

KEEP COOL AND USE MACHINE LEARNING

ZELROS // FABIEN VAUCHELLES

What is Machine Learning

ML SOLVE PROBLEMS WHICH ARE UNSOLVABLE BY CONVENTIONAL METHODS

What is the type of problem

TYPE OF PROBLEM

SUPERVISED LEARNING

UNSUPERVISED LEARNING

SUPERVISED LEARNING

UNSUPERVISED LEARNING

satisfaction

UNSUPERVISED LEARNING

satisfaction

UNSUPERVISED LEARNING

satisfaction

What is the goal of ML algorithms

MINIMIZE THE ERROR

How to start a ML problem

AS DEVELOP WE USE TEST DRIVEN DEVELOPMENT

ANALYZE DATA

Do you speak Data

DATA LANGUAGE

Dataset

NAME	AGE	CLASS	DIED ?
John	23	3	Yes
Marry	31	1	No
Henry	23	2	Yes
Nicolas	41	1	No
Anna	18	3	Yes

Feature

NAME	AGE	CLASS	DIED ?
John	23	3	Yes
Marry	31	1	No
Henry	23	2	Yes
Nicolas	41	1	No
Anna	18	3	Yes
DATA LANGUAGE

Target

NAME	AGE	CLASS	
John	23	3	Yes
Marry	31	1	No
Henry	23	2	Yes
Nicolas	41	1	No
Anna	18	3	Yes

DATA LANGUAGE

DEMO TIME !

How to visualize a feature

EXCEL WON'T HELP YOU ON BIG DATA

YOU LOVE STATISTIC METHODS

Median: 50%

SENORGEF.COM DEMO TIME!

Why do we care of missing data

ALGORITHMS DON'T LIKE MISSING DATA

10 **Nan** 20 **Nan** 30

10 **Nan** 20 **Nan** 30

Fill empty value with median: 20

DEMO TIME !

CREATE FEATURES

Why do we create Artificial Features

ARTIFICIAL FEATURES HELP ALGORITHMS TO HAVE BETTER PREDICTION

UNDERSTAND CATEGORIES

NAME	GENDER
John	male
Marry	female
Henry	male
Nicolas	male
Anna	female

I DON'T UNDERSTAND TEXT !

UNDERSTAND CATEGORIES

NAME	GENDER		NAME	GENDER
John	male		John	1
Marry	female		Marry	2
Henry	male		Henry	1
Nicolas	male		Nicolas	1
Anna	female		Anna	2

2 > 1 !!!

LabelEncoder

UNDERSTAND CATEGORIES

NAME	GENDER		NAME	GENDER_MALE	GENDER_FEMALE
John	male	\	John	1	0
Marry	female		Marry	0	1
Henry	male		Henry	1	0
Nicolas	male		Nicolas	1	0
Anna	female		Anna	0	1

OneHotEncoder

DEMO TIME !

TRAIN THE MODEL

What can we predict

CLASSIFICATION

Do we have survived on Titanic ?

NAME	AGE	CLASS	DIED ?
John	23	3	Yes
Marry	31	1	No
Henry	23	2	Yes
Nicolas	41	1	No
Anna	18	3	?

What is the price of the ticket ?

NAME	AGE	CLASS	FARE
John	23	3	71
Marry	31	1	8
Henry	23	2	53
Nicolas	41	1	7
Anna	18	3	?

What algorithm can we choose

What is Linear Regression

/ LINEAR

/ POLYNOMIAL

/ POLYNOMIAL

h (X) = $\theta_0 + \theta_1 X + \theta_2 X^2 + \theta_3 X^3$ У Х
REGRESSION

/ POLYNOMIAL

REGRESSION

/ POLYNOMIAL

/ COST FUNCTION

Sum of errors :

/ COST FUNCTION

h (X) = $\theta_0 + \theta_1 X + \theta_2 X^2$

/ COST FUNCTION

h (X) = $\theta_0 + \theta_1 X + \theta_2 X^2 + \theta_3 X^3$

VALIDATE THE PREDICTION

How to validate a trained model

NEW DATA

DEMO TIME !

• <u>Coursera Machine Learning</u>

https://www.coursera.org/learn/machine-learning

• <u>Coursera Deep Learning</u>

https://www.coursera.org/specializations/deep-learning

• <u>Kaggle</u>

http://www.kaggle.com

ANY QUESTIONS ?

zelros.com / fabien.vauchelles.@zelros.com / @fabienv
http://bit.ly/ml-aismarttech