Where is my cache?

Architectural patterns for caching
microservices by example

Rafat Leszko
y) @RafalLeszko
rafalleszko.com
Hazelcast

About me

® (Cloud Software Engineer at Hazelcast

® Worked at Google and CERN

® Author of the book "Continuous Delivery
with Docker and Jenkins"

® Trainer and conference speaker

® Live in Krakow, Poland

About Hazelcast

® Distributed Company

® Open Source Software .
® 140+ Employees -
® Products:

O Hazelcast IMDG hazelcast

O Hazelcast Jet

y @Hazelcast

O Hazelcast Cloud
www.hazelcast.com

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

Why Caching?

® Performance GCAGHING
()
O Decrease latency @é’

O Reduce load

® Resilience

O High availability e —
_ GACHING EVERYWHERE

O Lower downtime

Microservice World

Service 2
v1
3 @ python
Service 2
v2
v
MY
ﬂ‘d? Y Service 4
® 2
, v

u Service 4
v3

a Ruby

Microservice World

3 @ python
/ cache
v1
N
ﬂ‘de N Service 4
® v2

u Service 4

v3

a Ruby

Microservice World

cache

cache
cache

Service 2
vi
B @ python
Service 2
v2

Service 4
v
M
Y Q%i:((/)
V2 Java

u Service 4
v3

a Ruby

Microservice World

g cache . i-c 1

n Q
o@dc

Service 2
vi

Service 2
v2

@ python

AN

Service 4
v
Service 4
v2

Service 4
v3

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

A

=)
(b
B
T O
L cam
=
Ll
—

Embedded Cache

Application

Request

4 Load Balancer

Application

Embedded Cache (Pure Java implementation)

String> cache =

private ConcurrentHashMap<String,
new ConcurrentHashMap<> () ;

{

private String processRequest (String request)
if (cache.contains (request)) {

return cache.get (request);

}
String response = process (request);

cache.put (request, response);

return response;

Embedded Cache (Pure Java implementation)

private Concurren

private String proces
if (cache.contains(r

return cache.

String respon
cache.put (reque
return response;

Java Collection is not a Cache!

No Eviction Policies

No Max Size Limit
(OutOfMemoryError)

No Statistics

No built-in Cache Loaders
No Expiration Time

No Notification Mechanism

ITS NOT'G

imgfiip.com

-
)]
L

'I'IIE CACHI

Al

fllllllll l}lﬂll ITSELF

Embedded Cache (Java libraries)

CacheBuilder.newBuilder ()
.initialCapacity (300)
.expireAfterAccess (Duration.ofMinutes (10))
.maximumSize (1000)
ouild();

Embedded Cache (Java libraries)

CacheBuilder.newBuilder ()
.initialCapacity (300)
.expireAfterAccess (Duration.ofMinutes (10))
.maximumSize (1000)
ouild();

Il EHCACHE

Caching Application Layer

S @ spring

public class BookService {

@Cacheable ("books")
public String getBookNameByIsbn (String isbn) {
return findBookInSlowSource (isbn) ;

}

Caching Application Layer

) spring

public class BookService {
@Cacheable ("books")

public String getBookNameByIsbn (String isbn) {
return findBookInSlowSource (isbn) ;

}

}

Be Careful, Spring uses ConcurrentHashMap by default!

Embedded Cache

Application

Request

4 Load Balancer

Application

Embedded Distributed Cache

Request

q Load Balancer

Application

\(Application

Hazelcast
Cluster

Embedded Distributed Cache (Spring with Hazelcast)

@Configuration
public class HazelcastConfiguration {

@Bean
CacheManager cacheManager () {
return new HazelcastCacheManager (
Hazelcast.newHazelcastInstance()) ;

DEMO

Hazelcast Discovery Plugins

dWs$s o,

N >) Google Cloud Platform

RED HAT

kubernetes

Hazelcast Discovery Plugins

@ https://hazelcast.com/blog/how-to-use-embedded-hazelcast-on-kubernetes/ P g

Open Source Projects: IMDG | Jet Training Q

[. -—-
'- haZEI(:aSt Products and Services Use Cases Resources = Get Hazelcast

How to Use Embedded Hazelcast on Kubernetes

Rafal Leszko | February 06, 2019

Hazelcast IMDG is a perfect fit for your (micro)services running on Kubernetes since it can be used in the embedded mode and
therefore scale in and out together with your service replicas. This blog post presents a step-by-step description of how to embed
Hazelcast into a Spring Boot application and deploy it in the Kubernetes cluster. The source code for this example can be found
here.

Hazelcast Discovery Plugins

@ https://hazelcast.com/blog/hazelcast-auto-discovery-with-eureka/ v

@ https://hazelcast.com/blog/ .
'. haZEICaSt Products and Services Use Cases Resources EE Get Hazelcast

5 hazelcast

How to Use Hazelcast Auto-Discovery with Eureka

Rafal Leszko | April 24, 2019

How to U:

Rafal Leszko | February 06, 2

Hazelcast IMDG supports auto-discovery for many different environments. Since

we introduced the generic discovery SPI, a lot of plugins were developed so you

<% Share

can use Hazelcast seamlessly on Kubernetes, AWS, Azure, GCP, and more. Should

Hazelcast IMDG is a pe you need a custom plugin, you are also able to create your own.

therefore scale in and

Hazelcast into a Sprinc IF your infrastructure is not based on any popular Cloud environment, but you still h I
here. want to take advantage of the dynamic discovery rather than static IP aZe CaSt Eure ka

configuration, you can set up your service registry. One of the more popular

Embedded Distributed Cache

Request

q Load Balancer

Application

\(Application

Hazelcast
Cluster

Embedded &

Pros Cons
Simple configuration / ® Not flexible management
deployment (scaling, backup)
Low-latency data access ® Limited to JVM-based
No separate Ops Team applications

needed ® Data collocated with

applications

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

Gl

Client-Server Cache

Request

>

Load Balancer

Application

Application

Cache Server

I3 hazelcast

Client-Server Cache

7 Application Cache Server

Request
q Load Balancer

Separate Management:

Client-Server Cache e backups

® (auto) scaling

® security
Application Cache Server
Request
94 Load Balancer
ApplitE=iTen a hazelcast

8 Ops Team

Client-Server Cache

Request

>

Load Balancer

Application

Application

Cache Server

I3 hazelcast

Client-Server Cache

7 Application Cache Server

Request

q Load Balancer

Application = hazelcast

Client-Server Cache

Client-Server Cache

I3 hazelcast

&P redis
M

Client-Server Cache

Starting Hazelcast Cache Server (standalone)

S ./start.sh

Client-Server Cache

Starting Hazelcast Cache Server (Kubernetes)

S helm install hazelcast/hazelcast

Client-Server Cache

Starting Hazelcast Cache Server (Kubernetes)

S helm install hazelcast/hazelcast

Hazelcast Client (Kubernetes):

@Configuration

public class HazelcastClientConfiguration {
@Bean
CacheManager cacheManager () {

ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig () .getKubernetesConfig/()

.setEnabled (true) ;
return new HazelcastCacheManager (HazelcastClient

.newHazelcastClient (clientConfiqg));

Separate Management:

Client-Server Cache e backups

® (auto) scaling

® security
Application Cache Server
Request
94 Load Balancer
ApplitE=iTen a hazelcast

8 Ops Team

Cloud (Cache as a Service)

Application

Request

q Load Balancer

Application [@) hazelcast cLoup

Cloud (Cache as a Service)

Management:
® Dbackups
e (auto) scaling
® security

Application

Request

q Load Balancer

Application [@) hazelcast cLoup

8 Ops Team

Cloud (Cache as a Service)

Ma ement:
o
o

aling
e Ysecurl

Application

Request

q Load Balancer

Application [@) hazelcast cLoup

Cloud (Cache as a Service)

Application

Request

q Load Balancer

Application [@) hazelcast cLoup

Cloud (Cache as a Service)

@Configuration
public class HazelcastCloudConfiguration {
@Bean
CacheManager cacheManager () {
ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig () .getCloudConfig()
.setEnabled (true)
.setDiscoveryToken ("KSXFDTi5HXPJGROwWRA jLgKe45tvEEhd") ;
clientConfig.setGroupConfig(
new GroupConfig("test-cluster", "b2£984b5dd3314"));

return new HazelcastCacheManager (
HazelcastClient.newHazelcastClient (clientConfiqg));

DEMO

cloud.hazelcast.com

a

Pros

® Data separate from
applications
® Separate management

(scaling, backup)

® Programming-language
agnostic

Client-Server [(WOITT) X0 [

Cons

Separate Ops effort
Higher latency

Server network requires
adjustment (same region,
same VPC)

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

Sidecar Cache

Kubernetes POD

all Application Container

Hazelcast

Request Kubernetes Service Cluster
(Load Balancer) B
H

Application Container

Kubernetes POD
kubernetes

Sidecar Cache

Similar to Embedded: Similar to Client-Server:
e the same physical machine e different programming language
e the same resource pool ® uses cache client to connect
e scales up and down together e clear isolation between app and cache
[

no discovery needed (always localhost)

Sidecar Cache

@Configuration
public class HazelcastSidecarConfiguration {
@Bean
CacheManager cacheManager () {
ClientConfig clientConfig = new ClientConfig();
clientConfig.getNetworkConfig ()
.addAddress ("localhost:5701") ;
return new HazelcastCacheManager (HazelcastClient
.newHazelcastClient (clientConfiqg))

Sidecar Cache

apiVersion: apps/vl
kind: Deployment

spec:
template:
spec:
containers:
- name: application
image: leszko/application
— name: hazelcast
image: hazelcast/hazelcast

Sidecar[&4[2

Pros

Simple configuration
Programming-language
agnostic

Low latency

Some isolation of data and
applications

Cons

® |imited to container-based
environments
® Not flexible management

(scaling, backup)

® Data collocated with
application PODs

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

¥

4. Reverse Proxy

Reverse Proxy Cache

Appllcatlon
Request Load
Balancer

m NGINX Appllcatmn

Reverse Proxy Cache
N NGinX

http {

proxy cache path /data/nginx/cache
keys zone=one:10m;

NGINX Reverse Proxy Cache Issues

Only for HTTP

Not distributed

No High Availability
Data stored on the disk

NGINX Reverse Proxy Cache Issues

Only for HTTP

Not distributed

No High Availability
Data stored on the disk

Is hazelcast § redis

Reverse Proxy Sidecar Cache

Kubernetes POD

Application Container

o
Hazelcast

Cluster

Request | Kubernetes Service

(Load Balancer)

N

Application Container
Kubernetes POD
kubernetes

Reverse Proxy Sidecar Cache

Service 2
v1
3 @ python
Service 2
v2

Service 4
v
MY
Service 4
%

u Service 4
v3
a Ruby

Reverse Proxy Sidecar Cache

Service 2
v1
3 @ python
Service 2
v2

Service 4
v
MY
Service 4
%

Service 4
v3

Reverse Proxy Sidecar Cache

apiVersion: apps/vl
kind: Deployment

spec:
template:
spec:
initContainers:
- name: init-networking
image: leszko/init-networking
containers:
- name: caching-proxy
image: leszko/caching-proxy
- name: application
image: leszko/application

Reverse Proxy Sidecar Cache

Pod

:80

:80

Application

Container

Reverse Proxy Sidecar Cache

#!/bin/bash

Forward TCP traffic on port 80 to port 8000 on the eth0O interface.
iptables -t nat -A PREROUTING -p tcp -i eth0O --dport 80 -3j REDIRECT
--to-port 8000

Reverse Proxy Sidecar Cache

Service 2
v1
3 @ python
Service 2
v2

Service 4
v
MY
Service 4
%

u Service 4
v3
a Ruby

Docs Blog FAQ About & Q

Reviews-v1|| i

*okkk |

Requests

Product|
page |\

ek hok

0
..................................

Reverse Proxy Sidecar Cache (Istio)

I] envoyproxy / envoy © Watch~ 509

Code ® Issues 438 Pull requests 51 Projects 1 Insights

‘e Tale

Support http caching #5868

tschroed opened this issue on May 1, 2017 - 10 comments

Fs tschroed commented on May 1, 2017 Contributor

As a generic http proxy, it would be useful for Envoy to support http caching. It seems like this could
probably implemented as a filter.

g 21

-

Quora Homeo % Answer Eﬁa Spaces Q Notifications Q. Search Quora

What are some best practices for caching in a typical
web app?

This question previously had details. They are now in a comment.

/, Answer 3 Follow - 48 3Q Request O1 <7 B ¥ 2> ooo

4 Answers

Kellan Elliott-McCrea ®
Answered Sep 4, 2010
The hardest part of caching is cache invalidation. If you're a content driven site,
——

then your job is trivial. If you are building anything resembling social software

caching involves a series of complex trade offs.

Reverse Proxy Cache

Application Cache:

@CacheEvict (value = "someValue", allEntries = true)
public void evictAllCacheValues () {}

Reverse Proxy Cache

Application Cache:

@CacheEvict (value = "someValue", allEntries = true)
public void evictAllCacheValues () {}

Proxy Cache:

http {

location / {
add header Cache-Control public;
explires 86400;
etag on;

Pros

® Configuration-based (no

need to change
applications)

Programming-language

agnostic
Consistent with containers
and microservice world

Reverse Proxy [N [T N I8 ¢

Cons

Difficult cache invalidation
No mature solutions yet
Protocol-based (e.g. works
only with HTTP)

Agenda

® |ntroduction

® Caching Architectural Patterns
O Embedded

Embedded Distributed

Client-Server

Cloud

Sidecar

Reverse Proxy

O Reverse Proxy Sidecar

O O O OO

® Summary

GAGHE IS KING

imaflip.com

Summary

application-aware?

application-aware?

containers?

application-aware?

containers?

no

Reverse Proxy

application-aware?

no
M}

containers?
yes no
¥ MY

Reverse Proxy
Sidecar

Reverse Proxy

application-aware?

ye% \\no
¥ M}
lot of data?

) . containers?
security restrictions?

VV \{)
¥ N\

Reverse Proxy

Reverse Proxy
Sidecar

application-aware?

yes no
¥ M}
lot of data?

) . containers?
security restrictions?

no yes no

Y ¥ Y

language-agnostic?

containers? Reverse Proxy

Sidecar

Reverse Proxy

application-aware?

ye% \\no
¥ Y
lot of data?
security restrictions?

\Q y

- ¥

language-agnostic?
containers?

\{)
)

containers?

\{)
N

N3

Reverse Proxy

Reverse Proxy

Sidecar

Embedded

(Distributed)

application-aware?

ye% \\no
¥ Y
lot of data?
security restrictions?

\o N
Ny g h
- ic?
language-agnostic? EECHISIEER Proxy
containers? -
Sidecar
yy \{)
¥

o

containers?

Reverse Proxy

Sidecar Embedded
(Distributed)

application-aware?

ye% \\no
¥ Y
lot of data?
security restrictions?

N R
¥ N ¥ M
- ic?
cloud? language .agnostlc. Reverse Proxy
containers? .
Sidecar
N\
¥

o

containers?

Reverse Proxy

Sidecar Embedded
(Distributed)

application-aware?

ye% \\no
¥ Y
lot of data?
security restrictions?

y«/ \Q yes \{3
¥ N ¥ M
)

containers?

cloud?

Reverse Proxy

S
- ic?
language-agnostic? - YNGR
containers?
Sidecar

\\no yes \{3

\ » 4

_ _ Embedded

application-aware?

ye% \\no
¥ Y
lot of data?
security restrictions?

yt/ \Q yes \{3
¥ N ¥ A
)

containers?

cloud?

Reverse Proxy

S
- ic?
language .agnostlc. Reverse Proxy
containers?
Sidecar

yes \\no yes \{)

¥ I\ ¥ MY

. . Embedded

Resources

® Hazelcast Sidecar Container Pattern:
https://hazelcast.com/blog/hazelcast-sidecar-container-pattern/

® Hazelcast Reverse Proxy Sidecar Caching Prototype:
https://github.com/leszko/caching-injector

® (Caching Best Practices:
https://vladmihalcea.com/caching-best-practices/

® NGINX HTTP Reverse Proxy Caching:
https://www.nginx.com/resources/videos/best-practices-for-caching/

https://hazelcast.com/blog/hazelcast-sidecar-container-pattern/
https://github.com/leszko/caching-injector
https://vladmihalcea.com/caching-best-practices/
https://www.nginx.com/resources/videos/best-practices-for-caching/

Thank You!

Rafat Leszko
Y @RafalLeszko
rafalleszko.com

	Slide 1
	About me
	Slide 3
	Agenda
	Why Caching?
	Microservice World
	Microservice World
	Microservice World
	Microservice World
	Agenda
	1. Embedded
	Embedded Cache
	Embedded Cache (Pure Java implementation)
	Embedded Cache (Pure Java implementation)
	Java Collection is not a Cache!
	Embedded Cache (Java libraries)
	Embedded Cache (Java libraries)
	Caching Application Layer
	Be Careful, Spring uses ConcurrentHashMap by default!
	Embedded Cache
	1*. Embedded Distributed
	Embedded Distributed Cache
	Embedded Distributed Cache (Spring with Hazelcast)
	Slide 24
	Hazelcast Discovery Plugins
	Hazelcast Discovery Plugins
	Hazelcast Discovery Plugins
	Embedded Distributed Cache
	Cons_clipboard0
	Agenda
	2. Client-Server
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache
	Client-Server Cache_clipboard2
	Client-Server Cache_clipboard1
	Client-Server Cache_clipboard0
	Client-Server Cache
	2*. Cloud
	Cloud (Cache as a Service)
	Cloud (Cache as a Service)
	Cloud (Cache as a Service)
	Cloud (Cache as a Service)
	Cloud (Cache as a Service)
	Slide 49
	Cons_clipboard1
	Agenda
	3. Sidecar
	Sidecar Cache
	Sidecar Cache
	Sidecar Cache
	Sidecar Cache
	Cons_clipboard2
	Agenda
	4. Reverse Proxy
	Reverse Proxy Cache
	Reverse Proxy Cache
	NGINX Reverse Proxy Cache Issues
	NGINX Reverse Proxy Cache Issues
	4*. Reverse Proxy Sidecar
	Reverse Proxy Sidecar Cache
	Slide 66
	Good
	Reverse Proxy Sidecar Cache
	Reverse Proxy Sidecar Cache
	Reverse Proxy Sidecar Cache
	Reverse Proxy Sidecar Cache_clipboard0
	Slide 72
	Reverse Proxy Sidecar Cache
	Slide 74
	Reverse Proxy Sidecar Cache (Istio)
	Bad
	Slide 77
	Reverse Proxy Cache_clipboard1
	Reverse Proxy Cache_clipboard0
	Slide 80
	Agenda
	Summary
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Resources
	Thank You!

