
Writing Modern C++ Code

December 10th 2019

Marc Grégoire
Software Architect
marc.gregoire@nuonsoft.com
http://www.nuonsoft.com/blog/

mailto:marc.gregoire@nuonsoft.com
http://www.nuonsoft.com/blog/

2

Marc Grégoire

 Belgium

 Software architect for Nikon Metrology

 Microsoft VC++ MVP

 Microsoft Extended Experts Team member

 Author of Professional C++, 2nd, 3rd and 4th Edition

 Co-author of C++ Standard Library Quick Reference
& C++17 Standard Library Quick Reference

 Founder of the Belgian C++ Users Group (BeCPP)

https://www.wiley.com/en-us/Professional+C++,+4th+Edition-p-9781119421306
http://www.apress.com/9781484218754
https://www.apress.com/gp/book/9781484249222
http://becpp.org/

3

Modern C++

Modern C++ is

4

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

5

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

6

Uniform Initialization

 Use brace initialization for any type

 Ex: Old way:
std::vector<int> vec;

vec.push_back(1);

vec.push_back(2);

vec.push_back(3);

 New way:
std::vector<int> vec = { 1,2,3 };

7

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

8

Auto Type Deduction

 Compiler can automatically deduce types of variables

 Ex:
auto myInt = 123;

// Old:

std::vector<int>::const_iterator i = vec.begin();

// Modern:

auto i = vec.begin();

9

Auto Type Deduction

 Compiler can automatically deduce return types

 Ex:
auto GetHello() {

return "Hello";

}

int main() {

auto result = GetHello();

}

10

Auto Type Deduction

 Benefits

 Reduces verbosity, allowing important code to stand out

 Avoids type mismatches

 Increases genericity, by allowing templates to be written that care less

about the types of intermediate expressions

 Deals with undocumented or unspeakable types, like lambdas

11

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

12

Range-Based for Loops

 Loops over all elements of a container

 Easier to write and read, expresses intend more clearly

 Instead of:
std::vector<int> vec = { 1,2,3,4,5,6 };

for (std::vector<int>::iterator iter = vec.begin();
iter != vec.end(); ++iter) {

*iter *= 2;

}

 In Modern C++:
std::vector<int> vec = { 1,2,3,4,5,6 };

for (auto& i : vec) {

i *= 2;

}

13

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

14

Real Null Pointer Type (nullptr)

 Problem with old NULL :

 It is implicitly converted to an integer because:

#define NULL 0

 It might not do what you expect it to do:

void foo(char* p) { cout << "char* version" << endl; }

void foo(int i) { cout << "int version" << endl; }

int main() {

foo(0); // Calls int version

foo(NULL); // Also calls int version

foo(nullptr); // Properly calls char* version ☺

}

15

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

16

In-Class Member Initialization

 Only certain members could be initialized in-class pre c++11

 Others had to be initialized in the constructor

 C++11 supports in-class member initialization, removing the
need for a constructor

class MyObject

{

private:

int m_someInt = 42;

std::string m_aString = "Hello World!";

std::vector<std::string> m_aVector = { "11", "22", "33" };

};

17

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

18

Nested Namespaces

 Instead of:
namespace Nuonsoft {
namespace Platform {
namespace Interfaces {
namespace UI {

class ICommandWindow { };

}}}}

 In Modern C++:
namespace Nuonsoft::Platform::Interfaces::UI

{

class ICommandWindow { };

}

19

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

20

Structured Bindings

 Deconstructs pair, tuple, …

 Instead of:
std::set<int> mySet;

auto result = mySet.insert(42);

if (result.second) { /* insert succeeded. */ }

 In Modern C++:
auto[location, success] = mySet.insert(42);

if (success) { /* insert succeeded. */ }

 Benefit: no need for multiple output parameters, just return a

tuple and deconstruct it on the calling side

21

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

22

CTAD

 Class Template Argument Deduction

 Previously, only deduction of template types for function
templates, now also for class templates
std::vector<int> v2 = { 1,2,3 };
// In Modern C++:
std::vector v1 = { 1,2,3 };

std::pair<std::string, double> p2{ "Hello"s, 42.24 };
// or:
auto p3 = std::make_pair("Hello"s, 42.24);
// In Modern C++:
std::pair p1{ "Hello"s, 42.24 };

23

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

24

String Views

 Usually, strings are passed by const std::string&

 But can cause unnecessary copying of strings

 For example: passing a string literal to a const std::string& creates a

temporary std::string

 A string_view is read-only view on any string

 Cheap to copy, only contains a pointer and a length

 Always use std::string_view instead of const std::string&

 Pass by value is ok

<string_view>

25

String Views

 std::string_view is almost a drop-in replacement for const

std::string&, except:

 No c_str(), only data(), because a string_view is not necessarily null

terminated

 No implicit conversion from a string_view to a string to avoid

accidental copying

 Implicit conversion from string to string_view

 Extra members: remove_prefix(n) and remove_suffix(n)

<string_view>

26

String Views

 Example:

void ProcessString(std::string_view myString)

{

}

ProcessString("Hello World");

std::string str = "Hello!";

ProcessString(str);

<string_view>

27

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

28

std::optional

 std::optional for optional parameters, return values, or data
members

void ProcessData(std::string_view data1,
std::optional<std::string_view> moreData)

{

}

std::optional<int> Generate()

{

if (ok)

return 42;

return {}; // or return std::nullopt;

}

<optional>

29

std::optional

 Access data from std::optional:
void ProcessData(std::string_view data1,

std::optional<std::string_view> moreData)

{

if (moreData)

{

// Access data through moreData.value()

// Or *moreData (undefined behavior if optional is empty)

}

// Or, use moreData.value_or("Default Data"s)

}

Throws std::bad_optional_access if the

optional is empty.

<optional>

30

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

31

Lambda Expressions

 Lambda expressions can be seen as small inline anonymous
functions

 Syntax

[capture_block](parameters) mutable exception_specification ->

return_type { body }

 capture block: how to capture variables from enclosing scope

 parameters (optional): parameter list, just like a function

 mutable (optional): marks the function call operator non-const

 exception_specification (optional): = throw list

 return_type (optional): the return type; if omitted, compiler deduces return type

32

Lambda Expressions

 Basic example:

int main() {

[] { cout << "Hello from Lambda" << endl; }();

}

33

Lambda Expressions

 Powerful in combination with Standard Library algorithms

 Ex:
bool gt5(const int& i) { return i > 5; }

...

std::vector<int> vec{ 1,2,3,4,5,6,7,8,9 };

int c = std::count_if(vec.begin(), vec.end(), gt5);

// With lambda expressions, no need for separate function:

int c = std::count_if(vec.begin(), vec.end(),

[](int i) { return i > 5; });

34

Lambda Expressions

 auto can be used to name lambdas, allowing them to be reused

int main() {

auto doubler = [](const int i) {

return i * 2;

};

std::vector<int> v1, v2;

// ... Fill vectors

// Transform elements from vectors:

std::transform(v1.begin(), v1.end(), v1.begin(), doubler);

std::transform(v2.begin(), v2.end(), v2.begin(), doubler);

}

35

Lambda Expressions

 Can capture variables from enclosing scope

 Ex:
int value = 3;

int c = std::count_if(vec.begin(), vec.end(),

[=](int i) { return i > value; });

 Capture block
 [] captures nothing

 [=] captures all variables by value

 [&] captures all variables by reference

 [&x] captures only x by reference and nothing else

 [x] captures only x by value and nothing else

 [=, &x, &y] captures by value by default, except variables x and y, which are captured by
reference

 [&, x] captures by reference by default, except variable x, which is captured by value

36

Lambda Expressions

 Compiler can automatically deduce parameter types for

lambda expressions

 Ex:
auto doubler = [](int i) {

return i * 2;

};

// With auto parameter

auto doubler = [](auto i) {

return i * 2;

};

37

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

38

Parallel Algorithms

 Around 70 algorithms can be executed in parallel

 Just specify an execution policy, <execution>

 Policies: std::execution::seq, par, par_unseq

 E.g.:

std::vector in{ 139, 41, 151, 137, 73 };

std::sort(std::execution::par, begin(in), end(in));

 You have to take care of data races!

<execution> <algorithm>

39

Parallel Algorithms

std::vector<int> in{ /* ... */ };

std::vector<int> out;

std::for_each(std::execution::par, cbegin(in), cend(in), [&out](int i) {

int j = DoSomething(i);

out.push_back(j);

});

std::mutex m;

std::for_each(std::execution::par, cbegin(in), cend(in), [&out, &m](int i) {

int j = DoSomething(i);

std::scoped_lock lock(m);

out.push_back(j);

});

Not thread-safe!

<execution> <algorithm>

40

Parallel Algorithms

 When an exception is thrown in a parallel algorithm

 → std::terminate() is called!

<execution> <algorithm>

41

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

42

Things To Unlearn

 If you know C++ pre-C++11 → unlearn a few things related to
memory management

 Avoid low-level pointer and raw memory manipulation → use
higher level constructs

 Smart pointers, containers, RAII, …

 Do not use new / new [] / delete / delete[], use smart
pointers:

 Exceptions safe

 Leak free

 Less error prone

 Deterministic, unlike garbage collectors (!)

43

Things To Unlearn

 Never do something as follows (C-style coding):

FILE* f = fopen("data.ext", "w");

// ...

fclose(f);

 Not exception safe!

 Error prone!

 Instead, use concepts like RAII, discussed later

44

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

45

Arrays

 Don’t use plain-old-dumb C-style arrays using

 new[]

 delete[]

 Instead, use containers like

 std::array

 std::vector

 ...

46

Raw Pointers

 Raw pointers in C++

 Do not use them if there is ownership involved

◼ Use smart pointers

 It’s ok to use them for pure observers

◼ Only if you can guarantee that the lifetime of the object pointed to is longer than

the lifetime of the observer

47

Smart Pointers

 Use shared_ptr or unique_ptr from

<memory>:

 shared_ptr: reference counted

 unique_ptr: not reference counted, non-copyable, but movable

 Safe to be stored in containers

48

Smart Pointers

 Use std::make_unique() / make_shared()

 Less typing in combination with auto type deduction

◼ Without :

unique_ptr<int> up(new int(42)); // int written twice

◼ With:

auto up = make_unique<int>(42); // int written once ☺

 A bit more performant in certain cases

49

Smart Pointers

 Never use std::auto_ptr

 Deprecated since C++11

 Removed (!) from C++17

50

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

51

Old C++ Versus New C++

 Suppose you have the following Circle class

class Circle
{
public:

Circle(double radius) : m_radius(radius) {}
double GetRadius() const { return m_radius; }
bool operator==(const Circle& c) { return m_radius == c.m_radius; }

private:
double m_radius;

};

ostream& operator<<(ostream& os, const Circle& circle)
{

os << "circle with radius " << circle.GetRadius();
return os;

}

52

Old C++ Versus New C++

vector<Circle*> LoadCirclesRaw()
{

vector<Circle*> circles;
circles.push_back(new Circle(11));
circles.push_back(new Circle(42));
circles.push_back(new Circle(33));
return circles;

}

vector<unique_ptr<Circle>> LoadCircles()
{

vector<unique_ptr<Circle>> circles;
circles.push_back(make_unique<Circle>(11));
circles.push_back(make_unique<Circle>(42));
circles.push_back(make_unique<Circle>(33));
return circles;

}

Old

New

53

Old C++ Versus New C++

Old
Circle* p = new Circle(42);
vector<Circle*> vw = LoadCirclesRaw();
for (vector<Circle*>::iterator i =

vw.begin(); i != vw.end(); ++i)
{

if (*i && **i == *p)
cout << **i << " is a match\n";

}
// ...
for (vector<Circle*>::iterator i =

vw.begin(); i != vw.end(); ++i)
{

delete *i;
}
vw.clear();
delete p;

New

auto p = make_unique<Circle>(42);
for (auto& circle : LoadCircles())
{

if (circle && *circle == *p)
cout << *circle << " is a match\n";

}

T* → unique_ptr<T>

new → make_unique

vector<T*> → vector<unique_ptr<T>>

no need for “circles” variable

no need for “delete”

automatic lifetime management

exception-safe

range-based

for loops

auto type deduction

54

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

55

Avoid Delete

 Write your code in such a way that there is never a need to use
delete or delete[]

56

Avoid Delete

 Don’t write code as follows:

void foo()
{
MyObject* p = new MyObject();

// ...

delete p;
}

 Not exception safe!

57

Avoid Delete

 Instead, use shared_ptr or unique_ptr:
void foo()
{
auto p1 = make_unique<MyObject>();
// ...

}

 Or, even better, use the stack:
void foo()
{
MyObject obj;
// ...

}

58

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

59

Automatic Lifetime

 Automatic Lifetime = Efficient + Exception Safe

class widget {

private:

gadget g;

public:

void draw();

};

void f() {

widget w;

// ...

w.draw();

// ...

}
Lifetime automatically

tied to enclosing object

No leak, exception safe

Lifetime automatically

tied to enclosing scope

Constructs w, including

the w.g gadget member

Automatic destruction

and deallocation of w

and w.g

Automatic exception safety, as if

“finally { w.g.dispose();

w.dispose(); }”

60

The Heap and Smart Pointers

class gadget;

class widget {

private:

shared_ptr<gadget> g;

};

class gadget {

private:

weak_ptr<widget> w;

};

shared ownership

keeps gadget alive with

auto lifetime management

no leak, exception safe

use weak_ptr to break

reference-count cycles

61

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

62

RAII

 RAII = Resource Acquisition Is Initialization

 A wrapper class:

◼ Constructor → acquires a resource

◼ Destructor → automatically releases the resource

 Often you can use std::unique_ptr or shared_ptr, as simple RAII

objects

Deterministic ☺

63

RAII

 For example, instead of:
FILE* f = fopen("data.ext", "w");

// ...

fclose(f);

 Use shared_ptr:
shared_ptr<FILE> filePtr(fopen("data.ext", "w"), fclose);

 Or unique_ptr:
unique_ptr<FILE, decltype(&fclose)> p(fopen("data.ext", "w"), fclose);

64

RAII

 Or write your own RAII object
class File
{
public:

// Constructor acquires resource
File(FILE* file) : m_file(file) {}

// Destructor automatically releases resource
~File()
{

if (m_file)
{

fclose(m_file);
m_file = nullptr;

}
}

// Conversion operator to FILE*
operator FILE* () const { return m_file; }

private:
FILE* m_file;

};

Creating a File instance:
File myFile(fopen("data.ext", "w"));

Using a File instance:
fputc('a', myFile);

Thanks to the FILE* conversion

operator, you can use a File instance

just as you would use a FILE*.

65

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

66

Garbage Collection in C++?

“C++ is the best language for garbage collection

principally because it creates less garbage.”

— Bjarne Stroustrup

67

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

68

Modules

 Advantages

 No header files

 Separation into interface files and implementation files is possible but not

needed

 Modules explicitly state what should be exported (e.g. classes, functions, …)

 No need for include guards

 No need to invent unique names, same name in multiple modules will not

clash

 Modules are processed only once → faster build times

 Preprocessor macros have no effect on modules

 Order of module imports is not important

69

Modules

 Create a module:
// codemonsters.cpp
export module codemonsters;

namespace CodeMonsters {
auto GetWelcomeHelper() { return "Welcome to CodeMonsters 2019!"; }
export auto GetWelcome() { return GetWelcomeHelper(); }

}

 Consume a module:
// main.cpp

import codemonsters;

int main() {

std::cout << CodeMonsters::GetWelcome();

}

70

Modules

 C++20 doesn’t specify if and how to modularize the Standard

Library

 Visual Studio makes it available as follows:

 std.regex→ <regex>

 std.filesystem→ <filesystem>

 std.memory→ <memory>

 std.threading→ <atomic>, <condition_variable>, <future>, <mutex>,

<shared_mutex>, and <thread>

 std.core→ everything else in the C++ Standard Library

71

Modules

 You can “import” header files, e.g.:

 import <iostream>

 Implicitly turns the iostream header into a module

 Improves build throughput, as iostream will then be processed only once

 Comparable to precompiled header files (PCH)

72

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

73

Ranges

 What’s a range?

 An object referring to a sequence/range of elements

 Similar to a begin/end iterator pair, but not replace them

 Why ranges?

 Provide nicer and easier to read syntax:
vector data{ 11, 22, 33 };
sort(begin(data), end(data));
sort(data); // with ranges

 Eliminate mismatching begin/end iterators

 Allows “range adaptors” to lazily transform/filter underlying sequences of

elements

74

Ranges

 Based on two core components:

 Views: range adaptors: lazily evaluated, non-owning, non-mutating

 Algorithms: all Standard Library algorithms accepting ranges instead of

iterator pairs

 Views can be chained using pipes → |

75

Ranges

 Example of chaining views:
vector data{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
auto result = data | views::remove_if([](int i) { return i % 2 == 1; })

| views::transform([](int i) { return to_string(i); });
// result == {"2","4","6","8","10"};

 Note: all lazily executed: nothing is done until you iterate over result

76

Ranges

 Example of a filtering and transforming chain of range adaptors:
int total = accumulate(

view::ints(1) |
view::transform([](int i) {return i * i; }) |
view::take(10),

0);

 view::ints(1) lazily generates an infinite sequence of integers

 this is lazily squared

 And finally we only take the first 10 elements of the infinite sequence and

accumulate these

77

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

78

Concepts

 Requirements attached to class- and function templates to

constraint template arguments

 Predicates evaluated at compile time

 Can contain multiple statements

79

Concepts

 Example of a concept definition:
template<typename T>
concept Incrementable = requires(T x) { x++; ++x; };

 Using this concept:
template<Incrementable T>

void Foo(T t);

template<typename T> requires Incrementable<T>

void Foo(T t);

template<typename T>

void Foo(T t) requires Incrementable<T>;

void Foo(Incrementable auto t);

80

Concepts

 A concept to require a size() method returning a size_t

template <typename T>
concept HasSize = requires (T x) {

{ x.size() } -> std::convertible_to<std::size_t>;
};

81

Concepts

 Combining concepts:
template<typename T> requires Incrementable<T> && Decrementable<T>

void Foo(T t);

 Or:
template<typename T>
concept Incr_Decrementable = Incrementable<T> && Decrementable<T>;

void Foo(Incr_Decrementable auto t);

 The Standard defines a whole collection of standard concepts:

 same, derived_from, convertible_to, integral, constructible, …

 sortable, mergeable, permutable, …

82

Concepts

 Concepts help with compiler error message

 Easier to read template error messages: e.g.:
Error: cannot call Foo() with Bar.
Note: concept Incrementable<Bar> was not satisfied.

83

Modern C++

 Uniform Initialization

 Auto Type Deduction

 Range-Based for Loops

 Real Null Pointer Type

 In-Class Member Initialization

 Nested Namespaces

 Structured Bindings

 CTAD

 String Views

 std::optional

 Lambda Expressions

 Parallel Algorithms

 Memory Management
 Things To Unlearn

 Pointers

 Old C++ Versus New C++

 Avoid delete

 Automatic Lifetime (stack & heap)

 RAII

 Garbage Collection in C++?

 C++20
 Modules

 Ranges

 Concepts

84

Questions

?

	Writing Modern C++ Code
	Marc Grégoire
	Modern C++
	Modern C++
	Modern C++
	Uniform Initialization
	Modern C++
	Auto Type Deduction
	Auto Type Deduction
	Auto Type Deduction
	Modern C++
	Range-Based for Loops
	Modern C++
	Real Null Pointer Type (nullptr)
	Modern C++
	In-Class Member Initialization
	Modern C++
	Nested Namespaces
	Modern C++
	Structured Bindings
	Modern C++
	CTAD
	Modern C++
	String Views
	String Views
	String Views
	Modern C++
	std::optional
	std::optional
	Modern C++
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Lambda Expressions
	Modern C++
	Parallel Algorithms
	Parallel Algorithms
	Parallel Algorithms
	Modern C++
	Things To Unlearn
	Things To Unlearn
	Modern C++
	Arrays
	Raw Pointers
	Smart Pointers
	Smart Pointers
	Smart Pointers
	Modern C++
	Old C++ Versus New C++
	Old C++ Versus New C++
	Old C++ Versus New C++
	Modern C++
	Avoid Delete
	Avoid Delete
	Avoid Delete
	Modern C++
	Automatic Lifetime
	The Heap and Smart Pointers
	Modern C++
	RAII
	RAII
	RAII
	Modern C++
	Garbage Collection in C++?
	Modern C++
	Modules
	Modules
	Modules
	Modules
	Modern C++
	Ranges
	Ranges
	Ranges
	Ranges
	Modern C++
	Concepts
	Concepts
	Concepts
	Concepts
	Concepts
	Modern C++
	Questions

