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What is cloud ready?

● Spring, Java EE / Jakarta EE, 
MicroProfile or Lagom

● AWS, Azure or Openshift
● SQL or NoSQL

● REST or EJB
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Is it really about technology?
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Even cool tech can be painful



Cloud ready requirements
● Pluggable persistence

● Scalable according to 

the load

● Low coupling

There are even more according to the 12 factor applications manifesto

● External configuration

● Failure recovery

● Security

● Monitoring
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Solution?
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Solution: agile evolution

● Simple API abstractions

● Flexible implementations

● Application logic first, against a solid platform

● Abstract the technology, prepare for refactoring

● Choose final technology later
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Cloud-ready architecture
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1. JCACHE
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JCache
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JCache
● Temporary cache → optimize reads

● Cache data-retrieval method calls

● Temporary key-value store, extensible to 
permanent with a read/write-through policy

● More than 10 implementations (also in 
Payara Micro and Spring)

● Distributed caches allow scalable storage
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JCache API
@CacheResult
User getUserForName(String name) { /*do if not cached*/ }

@Inject
Cache<String, User> users;

users.put(user.getName(), user);

User user = users.get(name);

StreamSupport.stream(users.spliterator(), false)
.filter( e -> e.getValue().getAge() > 50)
.count()
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JCache in your app container
● JCache widely available (in Payara Micro, 

Open Liberty, Spring Boot, …)

● In Java EE containers integrated with CDI

● Often powered by Hazelcast
– Distributed, auto-discovery of nodes
– Data replication, even data distribution
– Lite nodes possible without data
– More features via Hazelcast extensions
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2. SCALABLE RUNTIME
…
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JCache
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What is Payara Micro?
● Executable JAR (~70MB disk size, ~30 MB RAM)

● Runs WAR and EAR from command line
– Also Uber JAR, embeddable (run from your app)

● Forms dynamically scalable cluster

● Web Profile "plus", MicroProfile

● Opensource, Maven dep, release each 3 months
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● Run multiple instances with the same command

java -jar payara-micro.jar application.war
  --autoBindHttp

● Package as a single executable Uber JAR

java -jar payara-micro.jar application.war 
  --outputUberJar application.jar

● Run embedded: PayaraMicro.getInstance().bootStrap()

● Run using Maven plugin: mvn payara-micro:start

Scale dynamically
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What is MicroProfile?
● Project at Eclipse Foundation

● Common API, multiple implementations

● Extends Java EE

● Modern patterns:
– Microservices, Reactive, … 

● http://microprofile.io - open for everybody

http://microprofile.io/
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3. RESTFUL
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REST services API (server)
● JAX-RS endpoint

  @GET
  @Path("/{id}")
  @Produces(MediaType.APPLICATION_JSON)
  public User getUser(@PathParam("id") 
    Integer id) {
      return userById(id);
  }
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REST services API (client)

● JAX-RS client

User user = client.target(url)
            .path("all")
            .request().get(User.class)

● MicroProfile client (much better abstraction)

User admin = userService.getUser("admin")
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JSON binding
@JsonbNillable
public class User implements Serializable {

   private String name;

   @JsonbTransient
   private String description;

   @JsonbProperty("userId")
   private long id;
}

- new in Java EE 8 and 
MicroProfile 2.0

More about JSON-B:
http://json-b.net 

http://json-b.net/
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4. MESSAGING
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CDI events, really?
● Part of Java EE API already

● Easy to send and observe messages

● Is it enough? What about:
– Sending events to other services
– Message broker to decouple services
– Transactions
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CDI events, really?

What about:

● Sending events to other services
– Nothing else is important in initial dev stage

● Message broker for reliable delivery

● Transactions
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Payara CDI event bus

● Out of the box in Payara Micro

● Uses embedded Hazelcast 

● No config needed, events dispatched to all 
matching services

@Inject @Outbound
Event<Payload> event; 

void onMessage(
  @Observes @Inbound
  Payload event)
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Events as an abstraction
● Transfer events to other services in an event 

handler
– Using distributed queues
– Using any message broker

● Distribute incoming messages as events

● Start simple, extend to robust
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One more option… JCA connector

● Message-driven beans, does it ring the bell?
– Not only for JMS but for any messaging infrastructure

● Connetors on Github for AWS, Azure, Kafka, MQTT

@MessageDriven(activationConfig = { … })
public class KafkaMDB implements KafkaListener {

    @OnRecord( topics={"my-topic"} )
    public void onMsg(ConsumerRecord record) {
        … 

https://github.com/payara/Cloud-Connectors
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Or evolution to avoid 
refactoring

event observer

JCA 
connection

observer

MDB
event



 @OMIHALYI

Evolutionary architecture
„An evolutionary architecture supports 
continual and incremental change as a first 
principle along multiple dimensions.“

„Microservices meet this definition.“

Neal Ford, Rebecca Parsons

http://evolutionaryarchitecture.com/
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5. CONFIGURATION FACADE
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● Standard config sources
– Env. variables
– System properties

● Pluggable sources
– Database?, secrets?

● More sources in Payara Micro
– Cluster-wide
– Directory, secrets
– Scoped (server, app, module)

Microprofile Configuration
@Inject 
@ConfigProperty(name = 
            "myservice.url")
URL myService;

URL myService = 
    ConfigProvider.getConfig()
    .getValue("myservice.url", 
               URL.class);
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DEMO
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BONUS: MONITORING
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Is there a free lunch?

Microprofile provides a lot out of the box

● Metrics – monitoring data, statistics

● Health – problem detection and autorecovery 

● Opentracing –  connects related requests
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Thank you!
● https://microprofile.io/

● https://www.payara.fish/

● http://evolutionaryarchitecture.com/

● https://github.com/payara/Cloud-Connectors

● https://www.microprofile-ext.org/
● https://github.com/OndrejM-demonstrations/elastic-cloud-ready-apps

https://microprofile.io/
https://www.payara.fish/
http://evolutionaryarchitecture.com/
https://github.com/payara/Cloud-Connectors
https://www.microprofile-ext.org/
https://github.com/OndrejM-demonstrations/elastic-cloud-ready-apps
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