
5 Agile Steps to building
Elastic and Cloud-ready apps

Ondro Mihályi, Payara, http://www.payara.fish

 @OMIHALYI

 @OMIHALYI

What is cloud ready?

● Spring, Java EE / Jakarta EE,
MicroProfile or Lagom

● AWS, Azure or Openshift
● SQL or NoSQL

● REST or EJB

 @OMIHALYI

Is it really about technology?

 @OMIHALYI

Even cool tech can be painful

Cloud ready requirements
● Pluggable persistence

● Scalable according to

the load

● Low coupling

There are even more according to the 12 factor applications manifesto

● External configuration

● Failure recovery

● Security

● Monitoring

 @OMIHALYI

Solution?

 @OMIHALYI

Solution: agile evolution

● Simple API abstractions

● Flexible implementations

● Application logic first, against a solid platform

● Abstract the technology, prepare for refactoring

● Choose final technology later

 @OMIHALYI

Cloud-ready architecture

 @OMIHALYI

1. JCACHE

 @OMIHALYI

JCache

 @OMIHALYI

JCache
● Temporary cache → optimize reads

● Cache data-retrieval method calls

● Temporary key-value store, extensible to
permanent with a read/write-through policy

● More than 10 implementations (also in
Payara Micro and Spring)

● Distributed caches allow scalable storage

 @OMIHALYI

JCache API
@CacheResult
User getUserForName(String name) { /*do if not cached*/ }

@Inject
Cache<String, User> users;

users.put(user.getName(), user);

User user = users.get(name);

StreamSupport.stream(users.spliterator(), false)
.filter(e -> e.getValue().getAge() > 50)
.count()

 @OMIHALYI

JCache in your app container
● JCache widely available (in Payara Micro,

Open Liberty, Spring Boot, …)

● In Java EE containers integrated with CDI

● Often powered by Hazelcast
– Distributed, auto-discovery of nodes
– Data replication, even data distribution
– Lite nodes possible without data
– More features via Hazelcast extensions

 @OMIHALYI

2. SCALABLE RUNTIME
…

 @OMIHALYI

JCache

 @OMIHALYI

What is Payara Micro?
● Executable JAR (~70MB disk size, ~30 MB RAM)

● Runs WAR and EAR from command line
– Also Uber JAR, embeddable (run from your app)

● Forms dynamically scalable cluster

● Web Profile "plus", MicroProfile

● Opensource, Maven dep, release each 3 months

 @OMIHALYI

● Run multiple instances with the same command

java -jar payara-micro.jar application.war
 --autoBindHttp

● Package as a single executable Uber JAR

java -jar payara-micro.jar application.war
 --outputUberJar application.jar

● Run embedded: PayaraMicro.getInstance().bootStrap()

● Run using Maven plugin: mvn payara-micro:start

Scale dynamically

 @OMIHALYI

What is MicroProfile?
● Project at Eclipse Foundation

● Common API, multiple implementations

● Extends Java EE

● Modern patterns:
– Microservices, Reactive, …

● http://microprofile.io - open for everybody

http://microprofile.io/

 @OMIHALYI

 @OMIHALYI

3. RESTFUL

 @OMIHALYI

JCache

R
E

S
T

 A
P

I

 @OMIHALYI

REST services API (server)
● JAX-RS endpoint

 @GET
 @Path("/{id}")
 @Produces(MediaType.APPLICATION_JSON)
 public User getUser(@PathParam("id")
 Integer id) {
 return userById(id);
 }

 @OMIHALYI

REST services API (client)

● JAX-RS client

User user = client.target(url)
 .path("all")
 .request().get(User.class)

● MicroProfile client (much better abstraction)

User admin = userService.getUser("admin")

 @OMIHALYI

JSON binding
@JsonbNillable
public class User implements Serializable {

 private String name;

 @JsonbTransient
 private String description;

 @JsonbProperty("userId")
 private long id;
}

- new in Java EE 8 and
MicroProfile 2.0

More about JSON-B:
http://json-b.net

http://json-b.net/

 @OMIHALYI

4. MESSAGING

 @OMIHALYI

CDI events, really?
● Part of Java EE API already

● Easy to send and observe messages

● Is it enough? What about:
– Sending events to other services
– Message broker to decouple services
– Transactions

 @OMIHALYI

CDI events, really?

What about:

● Sending events to other services
– Nothing else is important in initial dev stage

● Message broker for reliable delivery

● Transactions

 @OMIHALYI

Payara CDI event bus

● Out of the box in Payara Micro

● Uses embedded Hazelcast

● No config needed, events dispatched to all
matching services

@Inject @Outbound
Event<Payload> event;

void onMessage(
 @Observes @Inbound
 Payload event)

 @OMIHALYI

Events as an abstraction
● Transfer events to other services in an event

handler
– Using distributed queues
– Using any message broker

● Distribute incoming messages as events

● Start simple, extend to robust

 @OMIHALYI

One more option… JCA connector

● Message-driven beans, does it ring the bell?
– Not only for JMS but for any messaging infrastructure

● Connetors on Github for AWS, Azure, Kafka, MQTT

@MessageDriven(activationConfig = { … })
public class KafkaMDB implements KafkaListener {

 @OnRecord(topics={"my-topic"})
 public void onMsg(ConsumerRecord record) {
 …

https://github.com/payara/Cloud-Connectors

 @OMIHALYI

JCache

R
E

S
T

 A
P

I

CDI eventsJCA connector

 @OMIHALYI

JCache

R
E

S
T

 A
P

I

CDI eventsJCA connector

 @OMIHALYI

Or evolution to avoid
refactoring

event observer

JCA
connection

observer

MDB
event

 @OMIHALYI

Evolutionary architecture
„An evolutionary architecture supports
continual and incremental change as a first
principle along multiple dimensions.“

„Microservices meet this definition.“

Neal Ford, Rebecca Parsons

http://evolutionaryarchitecture.com/

 @OMIHALYI

5. CONFIGURATION FACADE

 @OMIHALYI

JCache

R
E

S
T

 A
P

I

JCA connector

Microprofile
Configuration

 @OMIHALYI

● Standard config sources
– Env. variables
– System properties

● Pluggable sources
– Database?, secrets?

● More sources in Payara Micro
– Cluster-wide
– Directory, secrets
– Scoped (server, app, module)

Microprofile Configuration
@Inject
@ConfigProperty(name =
 "myservice.url")
URL myService;

URL myService =
 ConfigProvider.getConfig()
 .getValue("myservice.url",
 URL.class);

 @OMIHALYI

DEMO

 @OMIHALYI

BONUS: MONITORING

 @OMIHALYI

Is there a free lunch?

Microprofile provides a lot out of the box

● Metrics – monitoring data, statistics

● Health – problem detection and autorecovery

● Opentracing – connects related requests

JCache
JA

X
-R

S

JCA connector

Microprofile
Configuration

Microprofile Metrics,
Health, Tracing

Microprofile JWT
Future?

M
ic

ro
p

ro
fil

e
F

a
ul

t T
o

le
ra

nc
e

 @OMIHALYI

Thank you!
● https://microprofile.io/

● https://www.payara.fish/

● http://evolutionaryarchitecture.com/

● https://github.com/payara/Cloud-Connectors

● https://www.microprofile-ext.org/
● https://github.com/OndrejM-demonstrations/elastic-cloud-ready-apps

https://microprofile.io/
https://www.payara.fish/
http://evolutionaryarchitecture.com/
https://github.com/payara/Cloud-Connectors
https://www.microprofile-ext.org/
https://github.com/OndrejM-demonstrations/elastic-cloud-ready-apps

	Title
	Before We Start
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

