
How to improve
the quality of your application

(I wish I’d known this earlier!)

Tuesday 10th December 2019
Java2Days, Sofia / Bulgaria

Ioannis Kolaxis – Coding Architect / Senior Expert

1
@IoannisKolaxis

Our application: CMP

• Automates the configuration & provisioning of our products,
achieving significant time savings for our service.

2
@IoannisKolaxis

Are you working for a software

product, where …?

• Customers keep complaining

about bugs

• New features take too much

time to be implemented

Software quality issues

3
@IoannisKolaxis

• Can you improve the quality of your software?

• How?

What can you do?

4
@IoannisKolaxis

Customer tickets ✔

• We usually measure quality via customer tickets:

CMP Customer tickets

5
@IoannisKolaxis

Code coverage ✔

• When we refer to quality, we usually think of code
coverage!

Increased coverage:
• from 67% (Feb 2017)
• to 72% (Jun 2018)

6
@IoannisKolaxis

Should you pay off your debt?

Decreased debt:
• from 1.359 days (Feb 2017)
• to 392 days (Jun 2018)

7
@IoannisKolaxis

Do not touch old code!
You will probably introduce new defects!

Old code is more reliable

“If a module is, on the average, a year older than an otherwise

similar module, the older module will have roughly a third fewer

faults.”
T. L. Graves, A. F. Karr, J. S. Marron and H. Siy, "Predicting fault incidence using software change history" in IEEE Transactions on

Software Engineering, vol. 26, no. 7, pp. 653-661, Jul 2000.

8
@IoannisKolaxis

Stop creating new debt

• Install SonarLint
plugin in your IDE.

• It helps you
detect, and fix
quality issues as
you write code.

• Download at:
www.sonarlint.org

9
@IoannisKolaxis

Stop creating new debt

• Setup Quality Gates in SonarQube

10
@IoannisKolaxis

• As a developer, where do you spend most of your time?

A. Reading existing code,

B. Writing new code,

C.Waiting for a full build to complete,

D.Other

Quiz

11
@IoannisKolaxis

• As a developer, where do you spend most of your time?

A. Reading existing code,

B. Writing new code,

C.Waiting for a full build to complete,

D.Other

Quiz

12
@IoannisKolaxis

Which parts of your code
do you read most often?

Just think …

13
@IoannisKolaxis

• Use git to find out where you spend most of your
development efforts:
git log --format=format: --name-only | egrep -v '^$' | sort | uniq -c | sort -r >

files_change_frequency.txt

258 usermanagementportlet/…/UserManagement_de.properties

250 usermanagementportlet/…/UserManagement_en.properties

227 usermanagement/…/RetrieveUserTmpltForUsersDataControlImpl.java

205 usermanagement/…/UserManagementImpl.java

154 usermanagement/…/EditUserResourceTemplateRulesBean.java

135 usermanagementportlet/…/AddEditUserBean.java

109 usermanagementportlet/…/ConfigureNewUserResourceBean.java

103 usermanagementportlet/…/addEditUser.jsp

Data never lies

Commits
per file

14
@IoannisKolaxis

The pattern

From a total of 10.007 files:
• 11 files → more than 100 commits
• 91 files → 31 < commits < 100
• 455 files → 10 < commits < 30
• 9.450 files → less than 10 commits

• Only a few files change frequently!

• This is where you spend

most of your time!

15
@IoannisKolaxis

A well-aimed refactoring will
help you:
• Spend less time to read code

& extend functionality.

• Become more productive!

Refactor frequently-changing files

16
@IoannisKolaxis

• “Churn measures based on counts of lines added, deleted, and

modified are very effective for fault prediction.”
R. M. Bell, T. J. Ostrand, and E.J. Weyuker, “Does Measuring Code Change Improve Fault Prediction?“, ACM Press, 2011.

• Files involved in a lot of bug fixing activities are most likely to be

defective
R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for

Defect Prediction“, Proceedings of the 30th International Conference on Software Engineering, 181-190, 2008.

Changing files predict system failures

17
@IoannisKolaxis

• Do not waste your time testing mature

functionality (=components that do not

change).

• Focus all your testing efforts on the

frequently-changing parts; those are

most likely to fail!

Focus your Quality Assurance efforts

Unit

Tests

Integration

Tests

E2E

Tests

18
@IoannisKolaxis

What is the coverage of
your new/changing code?

Ask the right questions

19
@IoannisKolaxis

• Files not changed in the past years → stable

components → mature features

• Is every mature feature still used by your customers?

• If a feature is not used, then delete its code!

• Else, extract stable features in separate libraries.

Identify stable components

20
@IoannisKolaxis

• Save time from your builds.

• Achieve faster onboarding of

new developers, by:

Go faster with deleted/extracted code

• Focusing only on actively developed code.

• Not having to familiarize with old/stable code.

21
@IoannisKolaxis

• Gain more insight, by measuring code
complexity for each one of the
frequently changing files.

• Language-neutral metrics for code
complexity:
• Number of lines
• Number of tabs

Measure code complexity

22
@IoannisKolaxis

• How many times did you provide a
bug fix, by adding a nested
conditional in your code?
if (…) {

for (…) {
if (customerSpecificSetup) {

// Do some magic, so that the
// application works for this customer!

}
}

}

Tabs increase complexity

tabs

23
@IoannisKolaxis

Rising complexity calls for refactoring

227

commits

24
@IoannisKolaxis

Our #1 priority for refactoring

205

commits

25
@IoannisKolaxis

Our #1 priority for refactoring

6.767 → 8.396 lines

22.421→ 29.310 tabs

Sept 2014

205

commits

26
@IoannisKolaxis

• The identified files are being changed by many developers

in parallel.

• Is it feasible to perform refactoring on a private branch?

• Can we afford to stop development, while someone works

for a long time on refactoring the identified files?

Refactor frequently changing files

27
@IoannisKolaxis

Break large file by responsibilities

findUser()
addUser()
editUser()
deleteUser()

findExtensionRange()
addExtensionRange()
editExtensionRange()
deleteExtensionRange()

getAssignedPhones()
getUnassignedPhones()

UserManagementImpl.java

….

….

O
ri
g
in

a
l
fi
le

 h
a
s
 t
o
o
 m

a
n
y
 r

e
s
p
o
n
s
ib

ili
ti
e
s

UserManagementImpl.java

D
e

le
g

a
te

 o
ld

 m
e

th
o

d
 c

a
lls

 t
o

 n
e

w
 c

la
s
s
e

s

findUser()

addUser()

editUser()

deleteUser()()

UserMgmt.java

Refactor
findExtensionRange()

addExtensionRange()

editExtensionRange()

deleteExtensionRange()

ExtensionRangeMgmt.java

getAssignedPhones()

getUnassignedPhones()

PhonesMgmt.java

28
@IoannisKolaxis

Divide and conquer

Old/stable
code

New/changing
code

Stabilize code

• When you refactor,

always try to stabilize new/changing code!

29
@IoannisKolaxis

Stabilizing code by refactoring

findUser()
addUser()
editUser()
deleteUser()

findExtensionRange()
addExtensionRange()
editExtensionRange()
deleteExtensionRange()

getAssignedPhones()
getUnassignedPhones()

UserManagementImpl.java

….

….

O
ri
g
in

a
l
fi
le

UserManagementImpl.java

R
e

fa
c
to

re
d

 f
ile

findUser()

addUser()

editUser()

deleteUser()()

UserMgmt.java

Refactor
findExtensionRange()

addExtensionRange()

editExtensionRange()

deleteExtensionRange()

ExtensionRangeMgmt.java

getAssignedPhones()

getUnasignedPhones()

PhonesMgmt.java

30
@IoannisKolaxis

• Released on 8th November 2006.

• > 50 million lines of code.

• ~ 2.000 developers.

Do you remember Windows Vista?

31
@IoannisKolaxis

• Microsoft measured several organizational metrics, and studied their

correlation with the defects of Windows Vista.

Organizational structure vs Quality

Organizational metric Assertion

Number of Engineers The more people who touch the code, the lower the quality.

Number of Ex-Engineers A large loss of team members affects the knowledge retention, and thus
quality.

Organization Intersection
Factor

The more diffused the different organizations contributing code, the lower is
the quality.

N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of Organizational Structure on Software Quality: An Empirical Case
Study“, ACM, 2008.

• Can the structure of your organization affect the quality of your

software application?

https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/

32
@IoannisKolaxis

• Organizational metrics are better

predictors of failure-proneness than

the traditional metrics used so far,

such as code coverage, code

complexity, etc.

Organizational structure impacts Quality

Model Precision

Organizational
structure

86,2%

Code coverage 83,8%

Code complexity 79,3%

Code churn 78,6%

Dependencies 74,4%

Pre-release bugs 73,8%

N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of Organizational Structure on Software Quality: An Empirical Case
Study“, ACM, 2008.

https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/

33
@IoannisKolaxis

• In another research, focused on Windows 7, Microsoft

distinguished between the following kinds of developers,

depending on their commits for a given component:

• Owner: has the most commits to that component.

• Major contributor: has more than 5% of total commits.

• Minor contributor: has less than 5% of total commits.

More organizational metrics

C.Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t Touch My Code! Examining the Effects of Code Ownership on
Software Quality“, ACM, 2011.

https://www.microsoft.com/en-us/research/publication/dont-touch-my-code-examining-the-effects-of-ownership-on-software-quality/

34
@IoannisKolaxis

• The researchers concluded that:

• “The number of minor contributors has a strong positive

relationship with both pre- and post-release failures …”

• “Higher levels of ownership for the top contributor to a

component results in fewer failures when controlling for the

same metrics, but the effect is smaller than the number of

minor contributors”

Effects of minor contributors

C.Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t Touch My Code! Examining the Effects of Code Ownership on
Software Quality“, ACM, 2011.

https://www.microsoft.com/en-us/research/publication/dont-touch-my-code-examining-the-effects-of-ownership-on-software-quality/

35
@IoannisKolaxis

• In one of our software components, we
had a total of 427 commits:

Gain insight into your components

Commits per developer

Metric Value

Minor
contributors

15

Major
contributors

6

Total
contributors

21

Ownership 20,37%

• The top contributing
developer made 87
commits:

87/427 = 20,37% ownership

36
@IoannisKolaxis

• In another software component, we had
a total of 253 commits for the same
period:

Gain insight into your components

Commits per developer

Metric Value

Minor
contributors

3

Major
contributors

6

Total
contributors

9

Ownership 28,85%

• The top contributing
developer made 73
commits:

73/253 = 28,85% ownership

37
@IoannisKolaxis

• Which component will probably
have more defects?

• Where would you focus your
testing efforts?

Know where you are standing …

Metric Component
A

Component
B

Minor
contributors

15 3

Major
contributors

6 6

Total
contributors

21 9

Ownership 20,37% 28,85%

38
@IoannisKolaxis

• More minor contributors
→ More defects

• Bigger ownership
→ Less defects

Beware of minor contributors!

Metric Component
A

Component
B

Minor
contributors

15 3

Major
contributors

6 6

Total
contributors

21 9

Ownership 20,37% 28,85%

39
@IoannisKolaxis

• Minor contributors must be consulting a

major contributor of a component before

making any changes to it.

• Pay more attention when reviewing

code submitted by minor contributors.

• More extensive testing should be

performed for components with low

ownership.

Use metrics to build better software

40
@IoannisKolaxis

• A customer asks for a new feature to be implemented,

but the major contributors of that component are not

available. What will you do?

• Ask from minor contributors, to start implementing this

new feature right away, or

• Delay the implementation of the feature, until one or

more major contributors are available?

Planning new features

41
@IoannisKolaxis

• Use git to find out all the contributors for a component:
git shortlog -s your_component > contributors.txt

17 Ioannis Kolaxis

18 …

34 …

• Or, to limit the results to contributors after a given date
(e.g. due to an organizational restructuring)

git shortlog -s --after=2018-05-01 your_component > contributors.txt

Learn your contributors

Commits per
developer

Folder

42
@IoannisKolaxis

1. Stop creating new quality issues.

2. Don’t touch old code.

3. Refactor your most complex, frequently

changing files.

4. Focus your testing on frequently changing files.

5. Pay attention to minor contributors.

Summary of proposed actions

43
@IoannisKolaxis

How do you build quality software?

Let’s share
our knowledge &

experience!

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. June 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

Thank you!

Email : ioannis.kolaxis@atos.net

Twitter : @IoannisKolaxis

