How to improve
the quality of your application

(I wish I'd known this earlier!)

Ioannis Kolaxis — Coding Architect / Senior Expert

Tuesday 10t December 2019

Java2Days, Sofia / Bulgaria At‘gs

Trusted partner for your Digital Journey

Our application: CMP

- Automates the configuration & provisioning of our products,
achieving significant time savings for our service.
Co LBViEREDS ; 1i 1 ET
u n I F 9 ~0mmon |l.| an a'_.] eme nt P |atfc rm Domain User: administrator @system | Settings | Help | Logout
Configuration Maintenance Fault Management Performance Management Accounting 47 138 i7
 tsers & Resources ?
ﬁ Users & Resources o Use the Column Settings option to select the number and order of columns to be displayed. Use Search or Advanced Search to narrow down the number of
% 5 = Users and Resources displayed in the list. Use the Export to CSV to download the list.
% Localities
i User Templates Search for: | |in |Last Name V| in |.-'-\II Localities V| with |Any Resource VH Search] l] | l Advanced...]
! Extension Ranges
Provisioning [(More w | | _Add... ||) J
4 CSVImport Sel:0 | Items Page: | D | All:6 Imj
™. Users from HPUM
-‘-’ LDAP |:| Last name First name Bus. Phone 1 Resources User Template Status
% Users from UC Accounts [& pesarti Athina +30 (210) 8189-613 o osvUserTemplate (] b
i Users from OSV Subscribers [& Fotopoulos Dimitrios +30 (210) 8189-140 2 1) »
[& Karakatselos Konstantinos +30 (210) 8189-847 o osvUserTemplate (] b
O ﬁ Kolaxis Ioannis +302108189858 C @ osvUserTemplate] 4
] & nanouris Toannis +498970071230 (€ Te0] »
O ﬁ Pegiou Vasiliki +30 (210) 8189-793 C @ osvUserTemplate] 4
.) @IoannisKolaxis At‘gs

Software quallty iIssues

L S 4”’* E | Are you working for a software

. l{ product, where ...?

* Customers keep complaining
about bugs

* New features take too much

time to be implemented

)) @IoannisKolaxis At‘gs

What can you do?

- Can you improve the quality of your software?

« How?

3 3 @IoannisKolaxis Atms

Customer tickets v

 We usually measure quality via customer tickets:

= Open Tickets

—H= Actual Tickets (With Fix) CMP Customer tickets

Il Tat Ticlketc)
earOpenTHickets)

A — Linear {Actual Tickets (With Fix))

[\

4) @IoannisKolaxis At‘gs

Code coverage v

« When we refer to guality, we usually think of code
coverage!

-:E Jerlki115 | @ login| signup

Jenkins CodeCoverage Code_Coverage Report UCv9.3.8.13

Back to Project

 Sus Code Coverage Increased coverage:
Cob c R
cobertura Coverage Report . from 67% (Feb 2017)
Console Cutput ren
= ° « to 72% (Jun 2018)

1004 —

= “iew Build Information

B0+

‘@ Coverage Report aesa-_.;;-;;” e
i@ HTML Report ‘:
&1 Previous Build f

9132

V7R2.0

VIR2F...

V7R2.1
Ucsezss

=

— Classes — Conditionals Files Lines Methods — Packages

Project Coverage summary

Name Packages Files Classes Methods Lines Conditionals
Cobertura Coverage Report a5 [2081216 ag [171011905 86% [217712519 579 [23073034331 72, [199797/27801§ 579, [108453/190369

.) @IoannisKolaxis Ams

Should you pay off your debt?

sonarqube Projects Issues Rules Q Quality Gates Administration Q, Search for projects, sub-projects and files.. m

17) Manual analysis from dev_git master July 6, 2018, 7:06 AM Version 1.0

Overview Issues Measures Code Activity Administration> More >

Quality Gate Passed 0 350k Java W 350k

Lines of Code

Bugs Vulnerabilities

Mo tags =

279@ 3290

% Bugs 6 Vulnerabilities EUB
Decreased debt: -
« from 1.359 days (Feb 2017)
e to 392 days (Jun 2018) July 4, 2018

Project Analyzed

3924@ 15k

Debt & Code Smells Quality Gate
SonarQube way

Code Smells

5 3 @IoannisKolaxis At‘gs

Old code is more reliable

Do not touch old code!
You will probably introduce new defects!

“"If @ module is, on the average, a year older than an otherwise

similar module, the older module will have roughly a third fewer

faults.”

T. L. Graves, A. F. Karr, J. S. Marron and H. Siy, "Predicting fault incidence using software change history" in IEEE Transactions on

Software Engineering, vol. 26, no. 7, pp. 653-661, Jul 2000.

3 @IoannisKolaxis Aws

Stop creating new debt

r —_ —— — — i
ﬂ EclipseWorkspace - Java - um—svc—usennanagEmenl."srdcnm."siemensfsymM/ns(umfumsﬂmplﬂ]serManagemant‘[mpljava - Eclipse - C:\CmpEnvirnnmenf\CMP_Ia...l = | Bl ||
File Edit Source Refactor MNavigate Search Project Run Window Help

° Insta” Sonarl_|nt T TN SR % -0~ Q- HE- O &~ PDe HE @ -5~

Quick Access |

[[e
I I n I n O r I D E = [J] UsertManagementimpljava &% m RetrievelserTmpltForUsersDataControllmpl java = 0O
l I l I S e toginaai
p g y n = 3ee writeCreationDataToFile(reportFile, resultsLog.printlog()); i
6381 BulkEditUmUsersReply reply =new BulkEditUmUsersReply(); -
‘ES 382 reply. setlumberOfSuccessfulEditedUsers(new Integer(successfullyEdited));
== 383 reply. setlumberdofUnsuccessfulEditedUsers(new Integer(unsuccessfullyEdited)); | -
i 6384 reply.setBulkEditCanceled(canceledReply); — " [|E| =
° Ju 385 L0G. info("Bulk =dit of UM users ended"); © Remove this "Integer” constructor] A-;
y I I 386 UmsBulkActionsHelper. remove (umsBulkaActionIden| 1 quick fix available: Jo K
6387 regContext.reply(reply); - . Em
288 ; Upen description of rule squidisel s
208 }cateh (ERESEERN <) { © Open description of rule squid:52129 »
389 UserManagementException ex = new UserManageme Press ‘F2' for focus| 82 FL

detect, and fix | e L

Search Histon Console Debug @SonarLlntRuIeDescr\ptlon pd Git Rep

- - e
I t e Constructors should not be used to instantiate "String” and primitive-wrapper classes (squid:52129)
q u a I y I S S u S a S & Code smell @ Major
Constructors for Strings and the objects used to wrap primitives should never be used. Doing so is less clear and uses more memory than simply using the

-
y O l I W r I te (O d e desired value in the case of strings, and using walue0f for everything else.
[]

Further, these constructors are deprecated in Java 9, which is an indication that they will eventually be removed from the language altogether.

m

Nencompliant Code Example

n L] =
® D 0 W I 0 a d a t n String empty = new String(); // Noncompliant; yields essentially "", so just use that.

String nonempty = new String("Hello world"); // Moncompliant
Double myDouble = new Double{1.1); // Moncompliant; use valueQf
Integer integer = new Integer{l); // Noncompliant

WWW . SO n a rI i nt . O rg l Boolean bool = new Boolean(true); // Noncompliant

Writable Smart Insert 6308: 20

g) @IoannisKolaxis Aws

Stop creating new debt

« Setup Quality Gates in SonarQube

sonargube Projects

Quality Gates

| SenarQube way ‘

juality Profiles CHIalifGates

SonarQube way

Conditions

Only project measures are checked against thresholds. Sub-projects, directories and files are ignored. More

Metric

Mew Blocker Issues

New Bugs

Mew Critical Issues

New Major Issues

Mew Vulnerabilities

Administration

COwver Leak Period

=

1=

1=

1=

Operator

is greater than

is greater than

is greater than

is greater than

is greater than

Q, Search for projects, sub-projects and files.. m

Rename | Copy | Set as Default | Delete |

Warning Error

Del

- 0] Delete

4
L]
[w)
i
Ll ot
i w

3 @IoannisKolaxis

A

é

Quiz

- As a developer, where do you spend most of your time?
A. Reading existing code,
B. Writing new code,
C. Waiting for a full build to complete,
D.Other

3 @IoannisKolaxis Aws

10

Quiz

- As a developer, where do you spend most of your time?

A. Reading existing code,

B. Writing new code,
C. Waiting for a full build to complete,

D. Other

3 @IoannisKolaxis Aws

11

Just think ...

Which parts of your code
do you read most often?

3 @IoannisKolaxis At@S

Data never lies

- Use git to find out where you spend most of your
development efforts:
git log --format=format: --name-only | egrep -v '~$' | sort | uniq -c | sort -r >

files_change_frequency.txt

Commits 258\ usermanagementportlet/.../UserManagement_de.properties

per file 250 | usermanagementportlet/.../UserManagement_en.properties
™ 227 |usermanagement/.../RetrieveUserTmpltForUsersDataControlImpl.java
205 |usermanagement/.../UserManagementIimpl.java

154 |Jusermanagement/.../EditUserResourceTemplateRulesBean.java

135 jusermanagementportlet/.../AddEditUserBean.java
109 | usermanagementportlet/.../ConfigureNewUserResourceBean.java
103/ usermanagementportlet/.../addEditUser.jsp

NS

13) @IoannisKolaxis Atms

The pattern

« Only a few files change frequently!

This is where you spend
most of your time!

From a total of 10.007 files:

11 files - more than 100 commits
91 files - 31 < commits < 100
455 files —- 10 < commits < 30

* 9,450 files — less than 10 commits

260
240
220
200

g 180

T 160

g 140

£ 139

£

€ 100

S a0

60
40
20

0

14

3 @IoannisKolaxis

Refactor frequently-changing files

A well-aimed refactoring will

help you:

« Spend less time to read code
& extend functionality.

Y - Become more productive!

15 3 @IoannisKolaxis Aws

Changing files predict system failures

"Churn measures based on counts of lines added, deleted, and
modified are very effective for fault prediction.”

R. M. Bell, T. J. Ostrand, and E.J. Weyuker, “"Does Measuring Code Change Improve Fault Prediction?", ACM Press, 2011.
Files involved in a lot of bug fixing activities are most likely to be

defective

R. Moser, W. Pedrycz, and G. Succi, “"A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for

Defect Prediction“, Proceedings of the 30t" International Conference on Software Engineering, 181-190, 2008.

16

3 @IoannisKolaxis Aws

Focus your Quality Assurance efforts

Do not waste your time testing mature

functionality (=components that do not E2E
Tests
change).
Integration
Focus all your testing efforts on the Tests
frequently-changing parts; those are / TUnit \
ests

most likely to fail!

17

3 @IoannisKolaxis At‘gs

Ask the right questions

What is the coverage of
your new/changing code?

18) @IoannisKolaxis At@S

Identify stable components

« Files not changed in the past years — stable

components — mature features

- Is every mature feature still used by your customers?
* If a feature is not used, then delete its code!

* Else, extract stable features in separate libraries.

19 3 @IoannisKolaxis Aws

Go faster with deleted/extracted code

« Save time from your builds.
« Achieve faster onboarding of

new developers, by:

« Focusing only on actively developed code.

* Not having to familiarize with old/stable code.

3 @IoannisKolaxis

20 AtOS

Measure code complexity

‘ ' - Gain more insight, by measuring code
complexity for each one of the

» ¢ frequently changing files.
o=

o - Language-neutral metrics for code
ﬁ complexity:

I * Number of lines
; 5 * Number of tabs

01) @IoannisKolaxis At‘gs

Tabs increase complexity

How many times did you provide a
bug fix, by adding a nested
conditional in your code?
if (...) £

for (...) {

—> if (customerSpecificSetup) {
tabs // Do some magic, so that the
// application works for this customer!
¥

¥
¥

22

3 @IoannisKolaxis

AtOS

Rising complexity calls for refactoring

RetrieveUserTmpltForUsersDataControllmpl.java

=== ines of Code =====Tabs

15000 M
1

oo ety 227
3 100 /*’f'_/ commits

:
-

Time

93) @IoannisKolaxis Atms

Our #1 priority for refactoring

UserManagementimpl.java

z } 205
5 j commits

” 3 @IoannisKolaxis At@s

Our #1 priority for refactoring

UserManagementimpl.java

T T __/_A_—,__.._—-—f\"’_

35000
N /’_,_/_,-—/

25000 6767 —> 8396 Iines
} 22.421— 29.310 tabs
£ e

. 205
£ j! — commits

5000 —/__—,—I V
Sept 2014

Time

-) @IoannisKolaxis A't@s

Refactor frequently changing files

- The identified files are being changed by many developers

in parallel.
Is it feasible to perform refactoring on a private branch?

Can we afford to stop development, while someone works

for a long time on refactoring the identified files?

26

3 @IoannisKolaxis Ams

Break large file by responsibilities

UserManagementImpl.java UserManagementImpl.java UserMgmt.java
findUser() findUser()
addUser()
Og,?user() editUser(]
editUser() deleteUser()

deleteUser()
ExtensionRangeMgmt.java

findExtensionRange() Refactor

addExtensionRange()
editExtensionRange() ‘

deleteExtensionRange()

findExtensionRange()
addExtensionRange ()
editExtensionRange()
deleteExtensionRange()

PhonesMgmt.java

getAssignedPhones()

gefUnassignedPhones() getAssignedPhones()

getUnassignedPhones()

Original file has too many responsibilities

Delegate old method calls to new classes

07) @IoannisKolaxis At‘gs

Divide and conquer

< Stabilize code

Old/stable New/changing

code code

 When you refactor,

always try to stabilize new/changing code!

- 3 @IoannisKolaxis At‘gs

Stabilizing code by refactoring

UserManagementImpl.java

UserManagementImpl.java

UserMgmt.java

findUser() gr(‘jdduusgr(g)
addUser() editUser(]
editUser() deleteUser()
deleteUser()
) ExtensionRangeMgmt.java
@ findExtensionRange() Refactor = , _
— | addExtensionRange) 3 gg%Egi,reer:s'g;RR%r;%i(g)
. . 5
%, edﬁEx’rensmnRonge() 5 editExtensionRange()
5 deleteExtensionRange() g deleteExtensionRange()
@
getAssignedPhones|) PhonesMgmt.java
getUnassignedPhones|) getAssignedPhones()
getUnasignedPhones|)
29) @IoannisKolaxis At‘gs

Do you remember Windows Vista?

Released on 8t" November 2006.

* > 50 million lines of code.

°* ~ 2.000 developers.

@IoannisKolaxis
30 4

AtOS

Organizational structure vs Quality

« Microsoft measured several organizational metrics, and studied their

correlation with the defects of Windows Vista.

Number of Engineers The more people who touch the code, the lower the quality.
Number of Ex-Engineers A large loss of team members affects the knowledge retention, and thus
quality.
Organization Intersection The more diffused the different organizations contributing code, the lower is
Factor the quality.

« Can the structure of your organization affect the quality of your

software application?

N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of Organizational Structure on Software Quality: An Empirical Case
Study", ACM, 2008.

3 @IoannisKolaxis Aws

31

https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/

Organizational structure impacts Quality

- Organizational metrics are better o
Organizational 86,2%

predictors of failure-proneness than structure

(o)
the traditional metrics used so far, Code coverage 83,8%

i (0]
such as code coverage, code Code complexity 79,3%

complexity, etc. Code churn 78,6%
Dependencies 74,4%

Pre-release bugs 73,8%

N. Nagappan, B. Murphy, and V.R. Basili, “The Influence of Organizational Structure on Software Quality: An Empirical Case
Study"“, ACM, 2008.

32 3 @IoannisKolaxis At‘gs

https://www.microsoft.com/en-us/research/publication/the-influence-of-organizational-structure-on-software-quality-an-empirical-case-study/

More organizational metrics

- In another research, focused on Windows 7, Microsoft

distinguished between the following kinds of developers, Windows*7

depending on their commits for a given component:
°* Owner: has the most commits to that component.
° Major contributor: has more than 5% of total commits.

* Minor contributor: has /ess than 5% of total commits.

C.Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “"Don’t Touch My Code! Examining the Effects of Code Ownership on
Software Quality"™, ACM, 2011.

33) @IoannisKolaxis Aws

https://www.microsoft.com/en-us/research/publication/dont-touch-my-code-examining-the-effects-of-ownership-on-software-quality/

Effects of minor contributors

- The researchers concluded that:
* "“"The number of minor contributors has a strong positive
relationship with both pre- and post-release failures ...”
* “Higher levels of ownership for the top contributor to a
component results in fewer failures when controlling for the
same metrics, but the effect is smaller than the number of

minor contributors”

C.Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “"Don’t Touch My Code! Examining the Effects of Code Ownership on
Software Quality"™, ACM, 2011.

34) @IoannisKolaxis Aws

https://www.microsoft.com/en-us/research/publication/dont-touch-my-code-examining-the-effects-of-ownership-on-software-quality/

Gain insight into your components

In one of our software components, we

had a total of 427 commits:

* The top contributing

developer made 87 Minor
. contributors
commits: o
87/427 = 20,37% ownership contmbutors
Total

contributors

Ownership

15

6

21

20,37%

Commits per developer

=

492%

14.52%

10.30%
B8.20%

@IoannisKolaxis
35 4

AtOS

Gain insight into your components

Commits per developer - In another software component, we had
a total of 253 commits for the same
period:

* The top contributing
Minor 3 developer made 73

contributors Commits:
73/253 = 28,85% ownership

(@)

Major
contributors

Total 9
contributors

Ownership 28,85%

36) @IoannisKolaxis Ams

Know where you

are standing ...

Minor 15
contributors

Major 6
contributors

Total 21
contributors

Ownership 20,37%

28,85%

« Which component will probably
have more defects?

 Where would you focus your
testing efforts?

@IoannisKolaxis
37 4

AtOS

Beware of minor contributors!

Minor 15
contributors

Major 6
contributors

Total 21
contributors

Ownership 20,37%

e More minor contributors

3 — More defects

6 - Bigger ownership

. — Less defects
28,85%

@IoannisKolaxis
38 4

AtOS

Use metrics to build better software

Minor contributors must be consulting a
major contributor of a component before
making any changes to it.

Pay more attention when reviewing
code submitted by minor contributors.
More extensive testing should be
performed for components with low

ownership.

39

3 @IoannisKolaxis

AtOS

Planning new features

- A customer asks for a new feature to be implemented,

but the major contributors of that component are not
available. What will you do?

Ask from minor contributors, to start implementing this
new feature right away, or

Delay the implementation of the feature, until one or

more major contributors are available?

@IoannisKolaxis
40 vy

AtOS

Learn your contributors

- Use git to find out all the contributors for a component:
git shortlog -s your_component > contributors.txt

Commits per Ioannis Kolaxis Folder
developer

« Or, to limit the results to contributors after a given date
(e.g. due to an organizational restructuring)
git shortlog -s --after=2018-05-01 your_component > contributors.txt

A1) @IoannisKolaxis At‘gs

Summary of proposed actions

Stop creating new quality issues.

Don’t touch old code.

Refactor your most complex, frequently
changing files.

Focus your testing on frequently changing files.

Pay attention to minor contributors.

42

3 @IoannisKolaxis

AtOS

How do you build quality software?

Let’s share
our knowledge &
experiencel

43 3 @IoannisKolaxis At‘gs

Thank you!

Email : ioannis.kolaxis@atos.net
Twitter : @loannisKolaxis

Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi, Bull, Canopy the
Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are
registered trademarks of the Atos group. June 2016. © 2016 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied,
circulated and/or distributed nor quoted without prior written approval from Atos.

