Kubernetes Operators 101

http://bit.ly/operators-101

Ali Ok
Senior Software Engineer
Red Hat

http://bit.ly/operators-101

About me

Senior Software Engineer @ Red Hat
Knative Eventing Team

Remotee in Istanbul

Operators

AGENDA

Agenda

First show some stuff
Then explain why we need all of these with use cases

Compare to other approaches

AGENDA

Step back

Kubernetes resources

Kubernetes resources

Kubernetes resources

e
O
n
©

9
o
()

o

Kubernetes resources

apiVersion: apps/vl
kind: ReplicaSet
metadata:
name: frontend
spec:
replicas: 3
template:
metadata:
labels:
tier: frontend
spec:
containers:
- name: php-redis

tmage: gcr.io/google_samples/gb-frontend:v3

Kubernetes resources

Kubernetes resources

$ kubectl get replicasets
NAME DESIRED CURRENT READY AGE
frontend 3 3 3 5s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
frontend-8rxnz 1/1 Running 0 7s
frontend-t2ffx 1/1 Running 0 7s
frontend-z7dg7 | &l Running 0 7s

Custom resources

Custom resources

What if Kubernetes would understand custom resources like a
definition of a Postgres cluster?

10

Custom resources

apiVersion: example.com/vl
Kind: postgresql
metadata:
name: my-postgres-db
spec:
itnstances: 2
version:
users:
jack:
- superuser
- createdb
volume:
size: 1Gi

ustom resource

definition

$ kubectl apply -T postgres-cr.yaml
postgresql.example.com/my-postgres-db created

$ kubectl get postgresqls
NAME VERSION INSTANCES VOLUME

my-postgres-db 2 1G1

AGE
12s

STATUS

Custom resource definition

apiVersion: apiextensions.k8s.io/vlbetal
kind: CustomResourceDefinition
metadata:
name: postgresqls.example.com
spec:
group: example.com
names:
kind: postgresql
shortNames:
- P9
validation:

spec:
type: object
properties:
instances:
type: integer
version:
type: string

additionalPrinterColumns:
- name: Instances
type: integer
JSONPath: .spec.instances

scope: Namespaced
subresources:
status: {}

13

Custom resources

Ok, we have the custom resource there, but now what?

It is not going to create actual Postgres instances itself!

14

Reconciliation

for {
desired := getDesiredState()
current := getCurrentState()
makeChanges(desired, current)

}

15

Evolution of the operator pattern

Basic Operator

Simple application that uses Kubernetes REST api to
create/update/delete Postgres instances

16

Evolution of the operator pattern

Basic Operator

resource

for {
list
for

3 ==

schema.GroupVersionResource{Group:

:= client.Resource(resource).Namespace(namespace).List(...)

_, ltem := range list.Items {

if handled(item){

}

continue

b

Version:

instances, _, _ := unstructured.NestedString(item.Object,

LT

createPostgres(instances, ...)

)

Resource:

Evolution of the operator pattern

Ok, but ...

... it is awful to use unstructured data, especially in a strongly
typed language

18

Evolution of the operator pattern

Types for the CRDs

Let’s create types for the CRDs and make the REST client use
them

19

Evolution of the operator pattern

Types for the CRDs

type Postgresql struct {
metavl.TypeMeta " json:
metavl.ObjectMeta "json:

Spec PostgresqlSpec " json:

}

type PostgresqlSpec struct {
Instances int32 “json:
Version string "json:

}
type PostgresqlList struct {
metavl.TypeMeta " json:

metavl.ListMeta "json:

Items []Postgresql "json:

20

Evolution of the operator pattern

Typed REST client usage

var config *rest.

crdConfig := *config
crdConfig.ContentConfig.

= &schema. {

restClient, _ := rest.RESTClientFor(&crdConfig)

for {
result := {}
restClient.Get().Resource(

for _, item := range result.
if handled(item) {

continue
instances, _, _ := item.Spec.
&F

createPostgres(instances,

).Do().Into(&result)

{

.)

21

Evolution of the operator pattern

Ok, but ...

... it is awful to define and register these types manually and also
do the REST client configuration

22

Evolution of the operator pattern

Code generation for the CRDs

Let’s generate code for the CRDs and also register them

23

Evolution of the operator pattern

Code generation for the CRDs

// +k8s:deepcopy-gen=package,register
// +groupName=example.com
package vl

// +genclient
// +genclient:noStatus
// +k8s:deepcopy-gen:interfaces=k8s.10/apimachinery/pkg/runtime.Object

type Postgresql struct {
metavl.TypeMeta “json:
metavl.ObjectMeta "json:

Spec PostgresqlSpec "json:
¥
type PostgresqlSpec struct {

Instances int32 “json:
Version string "json:

24

Evolution of the operator pattern

Code generation for the CRDs

will generate CRD yaml file to feed to Kubernetes, as well as a
typed REST clientset

Evolution of the operator pattern

Code generation for the CRDs

client, _

for {

items, _

25

examplecomclientset.NewForConfig(cfqg)

exampleClient.ExampleV1().Postgresqls(namespace).List(...)

Evolution of the operator pattern

Watch instead of poll

watcher, _ := exampleClient.ExampleV1l().Postgresqgls(namespace).Watch(...)

ch := watcher.ResultChan()

for event := range ch {
postgres, _ := event.Object.(*Postgresql)

switch event.Type {
case watch.Added:

// create new Postgres DB
case watch.Deleted:

// delete the Postgres DB created by this CR
case watch.Modified:

// update the Postgres DB created by this CR

26

27

Evolution of the operator pattern

Informers for better eventing model

Let the informer filter the events for you

28

Evolution of the operator pattern

Shared informers

You can have multiple controllers where you want to be informed
about the same set of resources

Especially secondary resources

29

Evolution of the operator pattern

Work queues

Retries

Rate limiting

30

Evolution of the operator pattern

| eader election

Ability to horizontally scale the operator

31

Evolution of the operator pattern

More and more stuff

32

Operator SDK

Enter Operator SDK

All of the steps are provided for you
CLI to do code generation and scaffolding

High level APl and abstraction

33

Operator SDK

Enter Operator SDK

A particular opinionated way to implement operators
Best practices are included

No need to be a Kubernetes / Golang expert

34

Demo

Demo

DEMO TIME!

https://qithub.com/aliok/postgres-operator-complete

https://github.com/aliok/postgres-operator-complete

35

Operator Framework

Operator Framework

SDK + CL|
Operator Lifecycle Manager (OLM)
OperatorHub

Operator Metering

36

OperatorHub

OperatorHub

Marketplace for Operators

37

OperatorHub

Al/Machine Learning
Application Runtime
Big Data

Cloud Provider
Database

Developer Tools
Integration & Delivery
Logging & Tracing
Monitoring
Networking
OpenShift Optional
Security

Storage

Streaming & Messaging

Altinity (1)

L Amazon Web Services (1)

Appsody (1)
Aqua Security (1)
! AtlasMap (1)

Show 50 more

77

A akka

Akka Cluster Operator

provided by Lightbend, Inc.

Run Akka Cluster applications
on OpenShift.

Aqua Security Operator

provided by Aqua Security, Inc.

The Aqua Security Operator
runs within Kubernetes cluster

and provides a means f

‘;4

Camel K Operator

provided by The Apache

Welcome to OperatorHub.io

existing Operator or list your own today.

£ Altinity

Altinity ClickHouse
Operator

provided by Altinity

ClickHouse Operator manages

full lifecycle of ClickHc

u
:4

AtlasMap Operator
provided by AtlasMap

AtlasMap is a data mapping
solution with an interactive
web based user interfa

¥

CockroachDB

provided by Helm Community

Apache CouchDB
provided by IBM

Apache CouchDB™ is a highly
available NOSQL database for

web and mobile applic

7

AWS S3 Operator

provided by Red Hat

Manage the full lifecycle of
installing, configuring and
managing AWS S3 Pro

Community Jaeger Operator

provided by CNCF

OperatorHub.io is a new home for the Kubernetes community to share Operators. Find an

Apache Spark Operator

provided by radanalytics.io

An operator for managing the

Apache Spark clusters and
intelligent application

aws
e -

AWS Service Operator
provided by Amazon Web

Services, Inc.

The AWS Service Operator
allows you to manage /

Crunchy PostgreSQL
Enterprise

1]
as Vv

Appsody Operator

provided by Appsody

Deploys Appsody based
applications

Banzai Cloud Kafka
Operator

provided by Banzai Cloud

Installs and maintains Kafka

w/

Dynatrace OneAgent
provided by Dynatrace LLC

AZv

38

OperatorHub

Postgres-Operator

Postgres operator creates and manages PostgreSQL clusters running in Kubernetes.

Home > Postgres-Operator

Postgres-Operator

The Postgres operator manages PostgreSQL clusters on Kubernetes.

Key principles

o Hands free: Configuration happens only via manifests and its own config
¢ Cloud native: Easy integration in automated deploy pipelines with no access to Kubernetes directly

e Scalable: Run highly available PostgreSQL clusters powered by Patroni

How it works

The operator watches additions, updates, and deletions of PostgreSQL cluster manifests and changes the running clusters accordingly. For each PostgreSQL custom
resource it creates StatefulSets, Services, and also Postgres roles. For some configuration changes, e.g. updating a pod's Docker image, the operator carries out the rolling

update.

Creating a Postgres cluster

After installing the Postgres Operator via OLM you can use the provided YAML examples to create a minimal cluster setup with two instances.

First, make sure the operator is running
kubectl get pod -1 name=postgres-operator -n operators

Then create a new Postgres cluster with a manifest file
kubectl create -n <namespace> -f manifests/minimal-postgres-manifest.yaml

Install

stable
1.2.0 (Current)

@ Basic Install

é Seamless Upgrades
é Full Lifecycle

l Deep Insights

|
Auto Pilot

Zalando SE

Naciimentatinn 2

‘ RedHat

Operator maturity model

Operator maturity model

Phase | Phase IlI Phase IV Phase V

Basic Install Seamless Upgrades Full Lifecycle Deep Insights Auto Pilot

Automated application Patch and minor version App lifecycle, storage Metrics, alerts, log Horizontal/vertical scaling,
provisioning and upgrades supported lifecycle (backup, failure processing and workload auto config tuning, abnormal
configuration management recovery) analysis detection, scheduling tuning

39
‘ RedHat

40

OLM

OLM

Operators that manage your operators
Some level of dependency resolution
Upgrades

Enabling users to use services

4

Then explain why we need all of these with use cases

42

Human operators vs software operators

Target is automating the software operating!

43

Use cases

Use cases

Installing stuff
State preservation
Managed software

Stateful apps

44

Real world operators

Real world operator - Postgres DB creation

apiVersion:
kind: postgresql
metadata:
name: acid-minimal-cluster
spec:
teamld:
volume:
size: 1Gi
numberOfInstances: 2
users:
zalando:
- superuser
- createdb
databases:
foo: zalando
postgresql:
version:

45

Real world operators

Real world operator - Keycloak realm creation in

existing server

apiVersion: aerogear.org/vlalphal
kind: KeycloakRealm

spec:
clients:
- baseURL: https://keycloak.com
bearerOnly: true
identityProviders:
- alias: github
config:

clientld: test
clientSecret: test
disableUserInfo:
hideOnLoginPage:
useJwksUrl:
enabled: true
providerId: github

46

Real world operators

Real world operator - Grafana dashboard creation in
existing service

apiVersion: integreatly.org/vlalphal
kind: GrafanaDashboard
metadata:

name: simple-dashboard

labels:

app: grafana

spec:

name: simple-dashboard.json

json: >

47

Real world operators

Real world operators - OpenShift

Operator that handles network config
Operator that handles web console

Operator that handles authorization

48

Comparison to other operator building tools

Compare: kubebuilder

Kubebuilder and Operator SDK converge
Now, both use controller-runtime and controller-tools

Conversion from one to another is easy

49

Comparison to other operator building tools

Compare: kubebuilder

Operator SDK has support for Operator Framework features
More:

github.com/operator-framework/operator-sdk/issues/1758

https://github.com/operator-framework/operator-sdk/issues/1758

50

Comparison to other operator building tools

Compare: Metacontroller

Complete abstraction of machinery
Webhook based and you can use any language you like

Not flexible enough, but can be sufficient in some use cases

51

Ansible, Helm, Java

Ansible, Helm, Java

Operator Framework also supports Ansible and Helm operators

If you have existing Ansible playbooks or Helm charts, you can
wrap them in an operator

There are some Java Operator SDKs which can be sufficient in
some cases

52

Summary

Summary

Make use of operators to use other people's expertise in
operating the dependencies

Write your own operator to operate your software

53

Final words

Final words

Not specific to OpenShift!
No need to be an expert in Golang
kube-builder and Operator SDK converging

Awesome operators: github.com/operator-framework/awesome-operators

learn.openshift.com/operatorframework

https://github.com/operator-framework/awesome-operators
https://learn.openshift.com/operatorframework

Thank you

Twitter - @aliok_tr

Github - aliok

